The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 1 1 1 1 1 1 1 1 X X 1
0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 0 2X 0 2X 0 2X 0 2X 0 2 2X 2 0 2X 2 0 2X 2 2 2 2 2 0 2X 0 2X+2 0 2X+2 0 2X 2X+2 2 0 2X 0
0 0 2X 0 0 0 2X 0 0 2X 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 2X 0 0 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 0 2X 2X 0 0 2X 2X 0
0 0 0 2X 0 0 0 2X 2X 2X 2X 2X 2X 0 2X 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 2X 0 2X 2X 0 0 0 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 2X 2X 2X 0 2X 0 0 0
0 0 0 0 2X 2X 2X 2X 2X 0 0 2X 0 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 2X 2X 2X 2X 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 0 0 2X 0 0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 0
generates a code of length 75 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 72.
Homogenous weight enumerator: w(x)=1x^0+22x^72+32x^73+12x^74+384x^75+8x^76+30x^77+16x^78+1x^80+4x^82+2x^109
The gray image is a code over GF(2) with n=600, k=9 and d=288.
This code was found by Heurico 1.16 in 0.407 seconds.